
@2004-2006 Backbase B.V., All Rights Reserved Page 1 of 11

The Forms Starter Kit

1. Introduction

The Forms starter kit is a special starter kit, which almost purely concentrates on

form based functionality. It aims to provide a framework for client-side form

validation. Since it is a dynamic BXML-based application, it does however also
touch on other essential areas of BXML such as include files, behaviors and

custom client controls. All of these will be briefly explained before we move on
and start to really dissect this forms-based functionality.

In a nutshell the application itself is merely a set of forms that enables the user

to enter his or her personal details, shipping address, billing address and
payment details, finally providing a summary of this. It is therefore not a

freestanding application but should instead be seen as a module, to allow for the

completion of an ordering process. The series of forms is clearly divided up into
steps. Before any of these steps can be completed, all of the required fields must

have been filled in and some kind of field level validation will have been
preformed on those fields, which require data to be entered into them in a fixed

format – an email address is a good example of this. This entire field-based
validation and ensuring that required fields are filled is done on the client. The

whole interface is in fact not only a single page interface, it also consists of only

@2004-2006 Backbase B.V., All Rights Reserved Page 2 of 11

two main files, one that determines the structure of the forms-based interface

and the other that contains all of the behaviors.

2. Including Files

A key technique used for keeping functionally distinct modules separate from

each other is the use of include files. Include files are well-formed xml files, which
can contain both BXML and normal HTML. They can be small and simple, merely

containing a few behavioral instructions or a small module such as a shopping
cart. They can also be very large and themselves contain multiple nested include

files.

In the Forms Starter Kit two files are included right at the start of the main
index.html file.

<s:include b:url="forms.xml"/>
<s:include b:url="../../controls/basic/button.xml"/ >

The forms.xml file loads in all of the functionality used for the form logic. It also

contains two custom controls which are used to help bring structure and grouping

to the forms based interface. These are the b:step and the b:group elements,

which will be explained later in more detail. The second include file is for
button.xml, which is used to include a standard b:button control from the control

library.

3. Behaviors

Behaviors are of fundamental importance to BXML. Almost the entirety of

forms.xml consists of behaviors. It is here that all of the form-based logic for the
checking of required fields and validating special fields is contained. This section

will aim to explain basic behaviors and how they work. The next section will

explain a little XPath and then finally we will put it all together and try to explain
the salient points of this form-handling framework.

One of the key strengths of BXML is the ease and simplicity with which events can

be handled. The main tool set used for this is behaviors. A behavior is a generic
construct in which, you the developer, can define which instructions or in BXML

terminology, tasks, should be executed when a given event occurs. This behavior
can then be used by any given element, which will then inherit all of the event

handlers defined within that behavior. This makes it easy to reuse functionality

and also to separate the content of the page from its behavior.

Since all of the behaviors in this Forms Starter Kit are rather complicated, it is

better to examine a more basic behavior, which isn’t found in this starter kit. The
show-hide behavior shown below allows the element, which uses this behavior, to

be shown when it is selected and hidden when it becomes deselected.

<s:behavior b:name="show-hide">
 <s:event b:on="select">
 <s:task b:action="show" />
 </s:event>
 <s:event b:on="deselect">
 <s:task b:action="hide" />
 </s:event>
</s:behavior>

This show-hide behavior can now be used by an infoview or some other box,

which we want to show and hide as and when it becomes selected.

@2004-2006 Backbase B.V., All Rights Reserved Page 3 of 11

A behavior can be made more sophisticated by applying control flow tags like s:if

or s:choose to it. The follow code fragment, which is a part of the form-field-
generic behavior from the forms.xml include file, demonstrates this:

<s:behavior b:name="form-field-generic">
 <s:event b:on="construct">
 <s:choose>
 <s:when b:test="@type='radio'">
 <s:setatt class="input-radio"/>
 </s:when>
 <s:when b:test="@type='button'">
 <s:setatt class="input-button"/>
 </s:when>
 <s:when b:test="@type">
 <s:setatt class="input-standard"/>
 </s:when>
 <s:otherwise>
 <s:setatt class="form-element"/>
 </s:otherwise>
 </s:choose>
 </s:event>

 ... rest of event handlers ...

</s:behavior>

As you can see the construct event of all of the elements, which use this behavior
are given a handler. This construct event is triggered when either the index.html

file is loaded or when an include file gets loaded in. When the construct event is
handled the interpreter finds a s:choose tag. This s:choose tag works similarly to

the JavaScript switch operator. A number of tests are performed sequentially by

the s:when tags, until one of the tests returns true. If none of the tests return
true, then any instructions in the s:otherwise tag gets executed. In this case the

tests performs an XPath instruction, which retrieves the value of the type
attribute and then compares this to a string value. If it matches one of these

string values, like ‘radio’ or ‘button’, then it executes an s:setatt instruction. This
s:setatt instruction causes any attributes found within this tag to be set onto the

actual element that uses this behavior. In this case the class attribute gets set to
the value given in the s:setatt tag. So as you can see, this construct event

handler ensures that all elements that use this behavior get given an appropriate

class when they are constructed, based on their type attribute.

4. XPath

An essential aspect of BXML is the ability to target elements on the screen and to
be able to retrieve information about these elements or their attributes. The

XPath language is used for all of these types of operations. Almost every task
that is executed has a target upon which this task should be executed. This target

is not always visible in the statement, since the default target for most tasks is
the element, which is using the behavior itself. It is very important to have at

least a basic understanding of XPath if you want to be able to build BXML
applications. The more thoroughly you understand XPath, the more you will be

able to leverage its power across BXML and the more powerful and flexible

applications you will be able to build. Such a thorough understanding of XPath is
especially important for this starter kit, since the form validation uses especially

heavy XPath.

XPath statements which are used to select on screen elements are commonly
found in the b:target attribute of a s:task statement. For example if you examine

the form-field behavior in the forms.xml include file, you will see the following
instruction in the mouseenter event handler:

<s:task b:action="show" b:target="id('form-field-in fo')" />

@2004-2006 Backbase B.V., All Rights Reserved Page 4 of 11

This instruction selects the element indicated by the b:target attribute, which is
the element with the b:id attribute of ‘form-field-info’. Since this is a show action,

this element will then get shown.

If you now look at the rest of this event handler you can see a lot more XPath.
Lets examine it piece by piece and try to really understand how it all works.

<s:event b:on="mouseenter">
 <s:if b:test="@b:valid and @b:valid != 'true'">
 <s:task b:action="set" b:target="id('form-field -info')" b:attribute="innerHTML"
 b:value="{@b:info}" />
 <s:task b:action="show" b:target="id('form-fiel d-info')"/>
 <s:task b:action="position" b:type="place" b:ta rget="id('form-field-info')"
 b:destination="." b:position="after-poi nter"/>
 </s:if>
</s:event>

Firstly there is an s:if tag which is executed right at the start of the event handler

to determine whether any action should be taken at all. The b:test attribute

contains the following XPath statement:

@b:valid and @b:valid != 'true'

When analyzing an XPath there are two important things to be aware of. Firstly
there is the question of data type. Different attributes expect the XPath resolver

to return different types of values to them. A b:target for example expects an
element or a collection of elements to be returned to it – this is called a nodeset

in XPath parlance. A b:value attribute on the other hand expects a string value to

be returned to it. And in this case the b:test expects a boolean value to be
returned to it. If the ‘wrong’ type of value gets given as the result of an XPath

then the BXML engine will try to convert it to the expected data type. So in this
case the b:test attribute requires a boolean value. The XPath expression consists

of two parts joined by an and operator. The first half of the statement simply
tests whether there is a b:valid attribute at all, irregardless of its value. The

second part tests whether it contains a value that is not equal to ‘true’. So the
tasks contained in this event handler will not be executed unless there is a b:valid

attribute, which has a value other than ‘true’.

The event handler then contains 3 tasks. The first task is a set task. A set task is

generally used to set an attribute value. It has 3 important attributes that control
this process. There is another b:target attribute, which is used to indicate which

element should have its attribute set. In this case it uses an id based XPath to
target the form-field-info div element again. This is a div element that is normally

hidden and is used to display error messages when a form field has not had its
value entered correctly.

The b:attribute attribute is used to indicate which attribute on the form-field-info

element should be set. In this case it is the innerHTML attribute of the form-field-
info element. This will cause the text contents of the element to be set. Finally

there is the b:value attribute. This is used to indicate the value that should be
set. This can be a static value, which will then always be the same for every use

of this behavior. It is also possible to use an XPath statement, which is done
here. This is done by surrounding the contents of the b:value attribute with

{curly braces}. The XPath in this case is simply:

@b:info

This causes the contents of the b:info attribute of the current element to be
copied to the contents of the form-field-info element, so that it can show the

value of the b:info attribute as the error message.

@2004-2006 Backbase B.V., All Rights Reserved Page 5 of 11

The second task was the show task, which we already explained. Finally there is
the third task, which is a position task. Positioning tasks are used to move

elements around the screen and absolutely position or resize them in some way.
The key attribute is the b:type attribute which is used to determine which type of

positioning should be used. In this case it is a place operation. This is used to
position the target element relatively to a second destination element. In this

case the target element, i.e. the one that gets moved is indicated by the b:target
element and the destination element, which is the anchor point for the positioning

is provided by the b:destination attribute. In this case the target element is the

form-field-info element, and the destination is the element which receives the
mouseenter event as indicated by the XPath statement ‘.’.

This example should hopefully have made it quite clear what an essential role

XPath plays in most behaviors.

5. Custom Client Controls

An important technique used in building BXML application is the creation and

reuse of custom client controls. These are also sometimes referred to as widgets.
Basically one of these custom controls is a definition for a new BXML tag, which

can then be used throughout your application.

A relative simple example of such a custom client control is provided in the

forms.xml file. Towards the bottom of this file you can find a s:htmlstructure tag.
This tag is used to define the b:group tag. This b:group tag is a new tag, which

can be used to group form components and then easily switch them on and off,
both visually and as far as validation is concerned. Lets have a look at the code

and see how this is done.

<s:htmlstructure b:name="b:group">
 <div style="display: none">
 <s:innercontent/>
 </div>
</s:htmlstructure>

Basically as you can see the definition for this control consists of a special tag
called s:htmlstructure. This is the tag, which is used to define new tags. With the

b:name attribute you give the name of the new tag, which is b:group in this case.
All custom defined tags must be in the b namespace. Within the s:htmlstructure

tag you can insert any HTML tags which you want to be rendered when the new
tag is used. Note that only HTML tags may be used within the s:htmlstructure

tag. Finally inside this HTML the s:innercontent tag is inserted at the point where
you want the child elements of the new tags to be placed. Obviously the child

elements of the new tag may be any BXML tag and not just HTML. When we

examine the HTML that makes up this new b:group tag, it doesn’t seem to do
much more than place an invisible div around the contents, thereby making the

entire contents of the tag invisible too. This doesn’t sound very useful at all, but

there is more. A b-group behavior is defined and an s:default tag is specified:

<s:behavior b:name="b-group">
 <s:event b:on="construct">
 <s:task b:action="trigger" b:event="deselect"/>
 </s:event>
 <s:event b:on="select">
 <s:task b:action="show"/>
 <s:task b:action="set" b:target="* | label/*" b :attribute="b:disabled"
 b:value="false" />
 </s:event>
 <s:event b:on="deselect">
 <s:task b:action="hide"/>
 <s:task b:action="set" b:target="* | label/*" b :attribute="b:disabled"

@2004-2006 Backbase B.V., All Rights Reserved Page 6 of 11

 b:value="true" />
 </s:event>
</s:behavior>

<s:default b:tag="b:group" b:attribute="b:behavior" b:value="b-group"/>

It is important to note the bottom line in the code fragment above. This is the
s:default tag, which is the glue that binds this behavior to all instances of

b:group. The s:default tag is relatively easy and simple to understand. It simply

binds a given value to a given attribute on a given element. In this case it is the
b-group behavior which gets bound to all b:group elements. By examining this b-

group behavior the working of the b:group element should become clear.

Firstly there is an event handler for the construct event. This construct event is
triggered when either the form.html file is loaded or when an include file gets

loaded in which contains an element that uses this behavior. The event handler
contains a single trigger task. A trigger task is a special task that is used to

trigger a new event. In this case it is a deselect event. Since no b:target attribute

has been specified, it uses the default value for b:target which is the element on
which the event occurs itself. The deselect handler, which now gets executed,

first hides the b:group element, then issues a set task. It is this set which is of
vital importance for the functionality of the b:group tag. The b:target of the

deselect is:

* | label/*

This is a fairly involved XPath that may need a little explaining. The asterix (*) is
a wild card, which means that it will select any child element of the current

context-node, which is the b:group element. After the asterix there is a pipe (|).
This pipe acts as a union operator, which means that this XPath is a compound

statement, consisting of two separate XPath statements. The result of these two
statements will be combined, when they have both been executed. The second

statement select all children of b:group which are label entities and then uses the
wild card again to select any child of these label entities. Once this group of

targets have been selected, then the b:disabled attribute of these targets is set to

‘true’. This is important because during validation of the form any element with a
b:disabled attribute with a value of ‘true’, gets ignored. So this is what enables

the contents of b:group element to be hidden and effectively switched off as far
as far form validation is concerned.

The select event handler does the opposite. It shows the b:group element and its

contents and it sets all of its target elements’ b:disabled attributes to ‘false’.

Now lets look at how this b:group tag is used in form.html. It is used as part of

the second step of the shipping form. Since a client’s billing address and shipping
address are frequently the same, but can be different, the user is given the

option of specifying whether they are the same or not. This option is presented
using a set of radio buttons. When the radio button with the label: ‘Different

Address’ is selected then suddenly the group becomes selected and is made

visible. When the other radio button is selected, then the group disappears. The
code for this fragment is displayed below.

<div class="label">Same as the billing address
 <div class="form-field">
 <input type="radio" name="shipping-address" val ue="same-as-billing" />
 </div>
</div>

<div class="label">Different address
 <div class="form-field">
 <input type="radio" name="shipping-address" val ue="different-from-billing" />

@2004-2006 Backbase B.V., All Rights Reserved Page 7 of 11

 </div>
</div>

<b:group b:name="shipping"
 b:followstate="ancestor::b:step[1]//input[@value='different-from-billing']">
 <div class="label">Country
 <div class="form-field">
 <input type="text" name="shipping_country" b: required="true" />
 </div>
 </div>
 <div class="label">Address Line 1
 <div class="form-field">
 <input type="text" name="shipping_address" b: required="true" />
 </div>
 </div>

</b:group>

You might now, quiet fairly, be wondering how clicking on one of these two radio
buttons cause the b:group element to become selected or deselected. Indeed if

you look carefully, neither of these radio buttons seem to have any special
behaviors attached to them. The clue is in the b:followstate attribute on the

b:group tag. An element that has a b:followstate attribute on it, follows the state

of its target. So if its target becomes selected it then too becomes selected. And

if its target becomes deselected it in turn becomes deselected. The value of the

b:followstate attribute is an XPath. It isn’t the most straightforward XPath so lets
examine it:

ancestor::b:step[1]//input[@value='different-from-b illing']

The first step of this XPath uses the ancestor axis. What this does is look up the

BXML node hierarchy, instead of down it. So from the b:group context node it

selects the first b:step element above it. From there it uses a double forward
slash (//) to indicate that it should go back down the hierarchy and select any

descendant of this b:step element, which is an input element and which has a
value attribute of ‘different-from-billing’. This element is the second radio button.

So now, effectively the b:group element follows the state of the radio button with
the label ‘Different Address’. When this radio button becomes selected, the

b:group element becomes selected and vice versa.

6. Putting it all Together

So by now some of the basic and most important concepts of BXML should be

clear and it is time to put it altogether and explain the heart of this form
processing application. There are three levels of validation in this process: field-

level validation, step-level validation and finally form submission.

Field-Level Validation

The primary level of validation is field-level validation, this specifically checks to
see whether correct content has been entered into an input field. A field can be

designated to be a postcode field for example, which means that it has to fit a
postcode pattern. Or a field could be designated to be a month, which would

mean it has to have a value between 1 and 12. So how does this validation take
place? The key to this process is the form-field-generic behavior and the use of

certain user-defined attributes on the input and other form fields. Lets take a look
at this process in more detail.

The key event on the form-field-generic behavior is the validate event. This is a
user-defined event, which means that it has to be triggered by another task. It

@2004-2006 Backbase B.V., All Rights Reserved Page 8 of 11

gets triggered at several points in the whole process, but for the actual field-level

validation the key trigger point is at the change event.

<s:event b:on="change">
 <s:task b:action="trigger" b:event="validate"
 b:target="ancestor::form[1]//*[@name = cu rrent()/@name]"/>
</s:event>

The change event is triggered, when a form field loses its focus and its value has

changed, since it received the focus. The event handler for the change event, now

triggers the validate event on all the children of the parent form which have the
same name attribute as the current field. This might seem like a bit of a round-

about way to trigger a validate event on the current field, but it is possible that
more than one field have the same name attribute, such as a group of check

boxes or a group of radio buttons.

Once the validate event is triggered, its handler is executed. This is the largest
and most complex event handler in the whole of the forms application. It is

suggested that you take a good look at this. Because it is so large, it won’t be

fully explained here, but lets take a look at some important parts of it now. It
essentially consists of two sets of s:choose tags. The first one is responsible for

determining whether the field is valid or invalid. It consists of more than 10
different s:when options. All of these steps test for different conditions. A few of

these cases will now be illustrated. The following condition tests whether a
required field has not been filled in:

<s:when b:test="@b:required='true' and regexp(@valu e, '^[]*$')
 and not(@type='radio' or @type='che ckbox')">
 <s:setatt b:valid="required" b:info="This is a re quired field"/>
</s:when>

As you can see if the b:required attribute has been set to ‘true’ and the field is

empty or only consists of whitespace, then a s:setatt command is executed,
which sets the b:valid attribute to ‘required’ and sets the special b:info attribute

which is used by the mouseenter event handler to display a user message as was

explained in the section about XPath.

The next condition tests whether the field validates to a Dutch zip code, which
have the format 1234AA.

<s:when b:test="@b:validation='zipcode'
 and not(regexp(@value, '^[1-9][0-9] {3} ?[a-zA-Z]{2}$'))">
 <s:setatt b:valid="false" b:info="A zip code shou ld be in the form 8888AA"/>
</s:when>

This tests to see whether the target has a b:validation attribute which is equal to

‘zipcode’ and if so if the value of the input then matches the appropriate regular
expression pattern which is used to express a Dutch zip code.

In this way many different conditions get tested. If you examine all of these

conditions you will see that the following parameters can be used to assist and
enable this type of form validation.

• The b:required attribute can have 'true' or 'false' values to indicate if the

field is required.
• The b:validation attribute can have the values ‘month’, ‘year’, 'email' and

'zipcode', which indicates that the field value should be matched against

the appropriate regular expression to validate this.
• The b:disabled attribute can be set to ‘true’ or ‘false’. If set to ‘true’, the

field is not checked for validity.

@2004-2006 Backbase B.V., All Rights Reserved Page 9 of 11

• The b:minoccurs attribute can be set to a numeric value on checkboxes

or multi select boxes to set a minimum number of checked items within
the group.

• The b:maxoccurs attribute can be set to a numeric value on checkboxes
or multi select boxes to set a maximum number for checked items within

the group.
• The b:valid attribute can have the values 'true', 'false' and ‘required’. This

attribute is not set while writing the code, but is set by the validate event
handler.

• The b:info attribute can be filled with a message by the validate event

handler, that is shown on mouseenter of an invalid field.

If all of these tests fail the execution ends up in the s:otherwise statement, which
sets the b:valid attribute to ‘true’. The second s:choose in the validate event

handler simply checks whether this b:valid attribute is set to ‘true’ or not. If so it
triggers a valid event, otherwise an invalid event.

It is interesting to see how these valid and invalid events are handled. They are
handled by a second behavior, form-field, which is related to the original form-

field-generic behavior. By using a special property of behaviors it is possible for
one behavior to extend another behavior. This is the case for the form-field

behavior, which extends the form-field-generic behavior. If we look at the
definition of the form-field-generic behavior, you can see a b:behavior attribute

on the s:behavior tag itself. It is this b:behavior attribute which indicates that the
form-field behavior extends the form-field-generic behavior.

<s:behavior b:name="form-field" b:behavior="form-fi eld-generic">
 <s:event b:on="valid">
 <s:setstyle b:border="" />
 </s:event>
 <s:event b:on="invalid">
 <s:setstyle b:border="1px solid red" />
 </s:event>

</s:behavior>

So what does this mean? When one behavior extends another behavior, this
extending behavior then inherits all of the base-level behavior’s event handlers. It

is a little bit like sub-classing of a super class in object-oriented programming.
For full details of this process see the manual. It is this second, extending

behavior, which is used by all of the input, select and textarea elements in the

application. The relation between these elements and the form-field behavior is
laid using several s:default tags.

Step-Level Validation

The next part of this picture is formed by the b:step element. This is another

custom tag, which is defined within the forms.xml file. It has a very similar
structure to that of b:group; the custom tag which was previously examined. It

consists of a s:htmlstructure tag, which defines another hidden div element. Its

linked behavior is somewhat more complicated and is called b-step. These b:step
elements are used to both visually and logically group parts of the form together.

If you examine this b-step behavior, then you will see that it has a number of
interesting event handlers. The construct event triggers the following handler:

<s:event b:on="construct">
 <s:if b:test="@b:state='selected' or position() = 1">
 <s:task b:action="trigger" b:event="select" />
 </s:if>

@2004-2006 Backbase B.V., All Rights Reserved Page 10 of 11

</s:event>

This ensures that if either a b:step element has a b:state attribute with the value
‘selected’ or it is the first b:step element within its parent container, then it will

be selected at start up. The select handler makes sure that the selected step is
shown and the other steps are hidden.

<s:event b:on="select">
 <s:task b:action="show"/>
 <s:task b:action="hide"
 b:target="preceding-sibling::b:step | fol lowing-sibling::b:step"/>
 <s:if b:test="position() = last()">
 <s:task b:action="copy"
 b:source="id('step-overview')/*[not(@b: exclude-from-summary)]"
 b:destination="." b:mode="aslastchild"/ >
 </s:if>
</s:event>

Each step has a ‘next’ button at the bottom of it, which triggers the next event on
the step.

<s:event b:on="next">
 <s:task b:action="trigger" b:target="* | */* | */ */*" b:event="validate" />
 <s:if b:test="not(.//*[@b:valid][@b:valid != 'tru e'])">
 <s:choose>
 <s:when b:test="following-sibling::b:step">
 <s:task b:action="set" b:attribute="b:step" b:target="ancestor::b:panelset[1]"
 b:value="{@b:step}"/>
 <s:task b:action="trigger" b:target="* | */ * | */*/* | */*/*/*"
 b:event="step-validated" />
 <s:task b:action="select" b:target="followi ng-sibling::b:step[1]" />
 </s:when>
 <s:otherwise>
 <s:task b:action="submit" b:target="ancesto r::form[1]"/>
 </s:otherwise>
 </s:choose>
 </s:if>
</s:event>

This is a rather complicated event handler that does a number of things. Firstly it
triggers a validate event on all of the children of the current step. Then if all of

children are valid, it either shows the next step, or if this is the final step it

submits the form. It also takes care copying the salient contents of each step to a

little summary on the left hand side by triggering the step-validated event on the
form-field behavior.

Form Submission

The final piece of the puzzle is the actual form submission. Submission of forms in
BXML is somewhat different from normal HTML. It doesn’t necessary lead to a

whole page reload, as it would in a normal web page. In most cases the
information is submitted to the server and then part of the page gets replaced by

the response file. If you look at the form tag in form.html you will see several
BXML attributes:

<form action="response.xml" b:target="." method="po st" b:behavior="form">

As you can see the action attribute points to response.xml that is a BXML file

which is the response file. The target that will be replaced by this response file is
the form element itself. This is indicated by the b:target attribute. The form has a

behavior called form. This behavior takes care of the validation and the
submission.

<s:event b:on="submit">
 <s:choose>
 <s:when b:test=".//b:step">

@2004-2006 Backbase B.V., All Rights Reserved Page 11 of 11

 <s:task b:action="send" />
 </s:when>
 <s:otherwise>
 <s:task b:action="trigger" b:target=".//*" b: event="validate" />
 <s:choose>
 <s:when b:test="not(.//*[@b:valid][@b:valid != 'true'])">
 <s:task b:action="alert" b:value="valid"/ >
 <s:task b:action="send" />
 </s:when>
 <s:otherwise>
 <s:task b:action="alert" b:value="invalid "/>
 </s:otherwise>
 </s:choose>
 </s:otherwise>
 </s:choose>
</s:event>

The submit event handler, does a few things. Firstly it checks whether there are

any b:step elements. If this is the case, then it assumes that these steps will
have taken care of validating all of the fields. All it then does is execute the send

task, which takes care of the final submission of the form. If there are no b:step

elements then it triggers a validate event and only if the entire form is valid does
it issue a send task to submit the form.

This in short provides a basic model for client side validation of forms. You may

use this and extend this in any of your own BXML applications. This document is
in no way meant to be complete or to cover every aspect of form handling or the

rest of BXML. You are advised to look through the code of Form Starter Kit
yourself carefully and examine the rest of the BXML documentation where

necessary.

